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A probabilistic treatment of the vibration field generated by the random vibration of flat
plate components is proposed herein. This treatment is based on the computation of the
frequency-averaged spatial correlation coefficient of the plate normal displacement. This
spatial correlation coefficient is derived using an approximate modal representation based
on Bolotin’s Method of Integral Estimates. Particular attention is paid to the boundary
conditions and results are derived for plates with clamped, simply supported, free or guided
edges. A general boundary condition which solely depends on the edge stiffness is employed
to model the effect of stiffeners on the plate vibration field. Information about the type of
excitation is also incorporated in this model. This approximate representation is compared
to that obtained by a modal summation method and good agreement between both
approaches is obtained for cases in which at least eight modes are resonant in a frequency
band.
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1. INTRODUCTION

The dynamic response of a plate-like structural component due to random excitation can
be resolved in terms of its normal modes of vibration. Such a solution involves the ‘‘exact’’
determination of the plate natural modes of vibration and associated natural frequencies.
Deterministic approaches such as the Finite Element Method (FEM) are well established
for the solution of this dynamic problem. However, the sensitivity of modal resonance
frequencies and relative modal phase response to small variations in structural detail
increase with modal order and, as a result, deterministic methods such as the FEM are
unreliable for the exact computation of the random response of dynamic systems involving
high order modes.

This stems from the fact that it is impossible to compute the precise spatial distribution
of amplitude and phase of a vibrational field involving high order modes because these
modes are very sensitive to damping distributions, joints and other boundary conditions,
about which there is always significant uncertainty. Moreover, deterministic computation
must be carried out frequency by frequency, and the response results are then normally
compiled in frequency bands, which implies that a large amount of data is unnecessarily
processed.

On the other hand, probabilistic methods based on power flow equations such as
Statistical Energy Analysis (SEA) are more appropriate for solving this problem in cases
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in which the structural system under study is modally dense. However, SEA does not
provide information about the actual spatial distribution of the vibration velocity field set
up in structural components under random excitation.

An approximate description is proposed herein for the spatial response distribution of
the bending wave field generated by the random vibration of thin plate-like structural
components. This representation is based on the computation of spatial correlation
characteristics of the vibration field, which are described by a frequency averaged
parameter, the zero time delay spatial correlation coefficient of the plate response.

As discussed by Maidanik [1], the form of the correlation field, specially near the edges
and perturbations, is very important for the prediction of the sound radiation of plane
structures below the critical frequency. In reference [1], Maidanik uses the spatial
correlation of a single mode of a simply-supported plate to estimate the radiation efficiency
of this mode. The single mode result was then employed to generate an estimate for the
acoustic radiation efficiency of a modally dense plate whose vibration field is reverberant.

The expressions for the multi-modal spatial correlation coefficient presented herein
enable the band limited acoustic radiation efficiency of plane structures to be computed
directly without resorting to investigation of the single mode radiation efficiency or without
the necessity of precise determination of the structural modes [2]. In addition, as described
in reference [2], the vibroacoustic coupling between a modally dense plate and a modally
sparse acoustic cavity can also be estimated based on the expressions derived in this work.
This type of interaction model is very important to interior noise control in transportation
vehicles. In both cases, the use of a band limited representation is very convenient as it
avoids the impractical frequency-by-frequency computation of the plate response and
associated acoustic radiation. Finally, it can also be pointed out that band-limited
estimates of the dynamic stress/strain concentrations near the boundaries of flat plate
structures could also be computed by substituting the expressions derived in this work in
the analysis presented in reference [3].

Asymptotic expressions for the spatial distribution of the mean square vibration velocity
of point excited simply-supported rectangular and square plates under wide band random
excitation were derived by Crandall [4, 5] using the method of images. The lines of
intensified response predicted by these asymptotic expressions have been observed in
square, rectangular, circular and triangular plates using salt grains spread over the plates
surface. These lines of intensified response pass along specific lines dictated by the position
of the excitation force and plate geometry. Under the assumption of wide band random
excitation the expressions presented herein closely approximate to those derived by
Crandall [4, 5].

For other types of excitation the method of integral estimates proposed by Bolotin [6]
provides useful information on the wide band response of structural systems. In this
method summation over mode shapes, modal damping, excitation cross-spectral densities
are substituted by integration over wavenumber space assuming these functions are slowly
varying in the wavenumber space. Application of this method to practical structures
enabled the derivation of wide-band expressions for the correlation functions and spectral
densities of the displacements, stress and strains of plates under random forces [6, 7].

In what follows, the response of flat plates to spatially uncorrelated forces is represented
using approximate mode shapes obtained by Bolotin’s Asymptotic Method (also called the
Dynamic Edge Effect Method) [6]. These approximate mode shapes are used to derive
frequency averaged spatial correlation coefficients of the response of plates with simply
supported, clamped, free, guided or spring supported edges. Approximations are also given
for the case of point excited plates or plates driven by acoustic excitation in the form of
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a diffuse acoustic field. The closed form result derived for plates with all around simply
supported edges is then compared with results obtained by a standard modal summation
method.

2. CORRELATION COEFFICIENTS OF RANDOM PROCESSES

Consider a continuous, time-invariant, linear system subjected to stationary random
excitation. The displacements, (z1 (x1, t) and z2 (x2, t)), at two different positions in this
system can be considered to be stationary random processes. Thus, the cross-correlation
function between the system displacements at points 1 and 2 is defined as [8]

R12 (x1, x2, t)=E[z1 (x1, t)z2 (x2, t+ t)], (1)

where E[ ] represents the expected value, or the ensemble averaged value, of the quantity
in square brackets, and t is the time delay between the two signals.

Assuming that the random process z1 and z2 have zero mean value, the cross-correlation
coefficient (or normalized covariance), g12 (x1, x2,t), for these random processes can be
written as [8]

g12 (x1, x2, t)=R12 (x1, x2, t)/(E[z2
1 (x1, t)])1/2(E[z2

2 (x2, t)])1/2, (2)

where E[z2
1 ] and E[z2

2 ] are the mean square values of the random processes z1 and z2,
respectively.

Using the Wiener–Khinchin relationship one can relate the cross-correlation function
with the cross-power spectral density

R12 (x1, x2, t)=Re $g
a

0

G12 (x1, x2, f ) exp (i2pft) df%, (3)

where G12 (x1, x2, f ) is the one-sided cross-power spectral density of random variable z at
positions 1 and 2.

For t=0, equation (3) yields

R12 (x1, x2, t=0)=g
a

0

Re [G12 (x1, x2, f ) df. (4)

The contribution of frequency components of G12 (x1, x2, f ) in a finite frequency band
Df is obtained by the integration of this function between f2 and f1, where f2 and f1 are
the upper and lower frequency limits of the band Df. Hence, in a frequency band the
corresponding zero-time delay spatial correlation coefficient can be termed the frequency
averaged spatial correlation coefficient (g12 (x1, x2, fc)), where fc is the band centre frequency
and the explicit indication of zero time delay is dropped for convenience. The mean square
value of the random processes z1 and z2 in a frequency band (f1 − f2 ) can be obtained from

E[z2
1 (x1, t)]=g

f2

f1

G1 ( f ) df, E[z2
2 (x2, t)]=g

f2

f1

G2 ( f ) df, (5)

where G1 ( f ) and G2 ( f ) are the auto-spectral densities of the random processes z1 and z2

at positions 1 and 2, respectively.
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Thus, from equations (5), (4) and (2), in a given frequency band, one has

g12 (x1, x2, fc )=g
f2

f1

Re [G12 (x1, x2, f )] df>$g
f2

f1

G1 ( f ) df%
1/2

$g
f2

f1

G2 ( f ) df%
1/2

. (6)

The above equation is convenient for experimental computation of spatial correlation
coefficient values and it was extensively utilised in the experimental work reported in a
companion paper [9]. Moreover, this equation is equivalent to the correlation density
coefficient as defined by Morrow [10] and employed in the analysis of correlation of sound
pressures in reverberant sound fields.

Equation (6) can also be employed in the theoretical derivation of frequency averaged
spatial correlation coefficients based on a modal model as described in section 5.
Alternatively, a different procedure can be employed in the computation of the spatial
correlation coefficient using a modal model. The modal spatial correlation coefficient when
one single undamped mode is present is given by [10]

g12M (x1, x2)= �z1M (t)z2M (t)�t /[�z2
1M (t)�t ]1/2[�z2

2M (t)�t ]1/2, (7)

where z1M (t) and z2M (t) are the instantaneous modal displacements at positions 1 and 2,
and � �t represents time averaging of the quantity inside the brackets. In the above
coefficient, the specific mode numbers kx and ky are represented by an intersection of the
lines of the grid shown in Figure 1. As the time dependence of an undamped vibration
mode is expressed by a sinusoidal factor the modal correlation coefficient equals 21 [10].

In a frequency band in which more than one mode is present, the frequency averaged
correlation coefficient can be obtained by summing the contribution from all modes that
have resonance frequencies in this band. In addition, assuming that these modes are
uncorrelated one can write the frequency averaged correlation coefficient as

g12 (x1, x2, fc )= s
N

�z1M (t)z2M (t)�t >$sN �z2
1M (t)�t%

1/2

$sN �z2
2M (t)�t %

1/2

. (8)

Alternatively, if the density of modal frequencies is high, the number of modes (N)
summed in equation (8) is large and the summation can be converted into integration over
wavenumber space [6]. The limits of integration are for an interval Dk around kb , the
bending wavenumber of the centre frequency of the band (Figure 1). Equation (8) becomes

Figure 1. Grid of discrete modes compared with continuous function representation in terms of kb and u.
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g12 (x1, x2, fc )=gDk

��z1M (t)z2M (t)�t � dkB >$gDk

��z2
1M (t)�t � dkB %

1/2

× $gDk

��z2
2M (t)�t � dkB %

1/2

, (9)

where � � denotes an average over a quarter circle of radius kB in the wavenumber space.
Changing from rectangular to cylindrical co-ordinates it follows that kx = kB cos u and
ky = kB sin u (Figure 1). As a result, the frequency averaged spatial correlation coefficient
can be obtained from

g12 (x1, x2, fc )=gDk g
p/2

0

[�z1M (t)z2M (t)�t ] du dkB >$gDk g
p/2

0

�z2
1M (t)�t du dkB %

1/2

×$gDk g
p/2

0

�z2
2M (t)�t du dkB %

1/2

. (10)

3. SPATIAL CORRELATION COEFFICIENTS ON MODALLY DENSE SIMPLY
SUPPORTED FLAT PLATES

The contribution of N vibration modes to normal displacement response of a simply
supported flat plate is given by

z(x, y, t)= s
N

M=1

sin (kxM x) sin (kyM y)ZM (t), (11)

where kxM and kyM are the modal bending wavenumbers in the x and y directions and ZM (t)
represents the modal time dependence. The displacements at points 1 and 2 for one
particular mode are

z1M (t)=ZM (t) sin (kxM x1) sin (kyM y1),

z2M (t)=ZM (t) sin (kxM x2) sin (kyM y2), (12)

where (x1, y1) and (x2, y2) are co-ordinates of points 1 and 2 as illustrated in Figure 2.

Figure 2. Sketch of plate used in the derivation of spatial correlation coefficients.
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Multiplying and time averaging the displacements at points 1 and 2 one has

�z1M (t)z2M (t)�t =Z2
M sin (kxM x1) sin (kxM x2) sin (kyM y1) sin (kyM y2), (13)

where Z2
M is the mean square value of ZM (t). Using standard trigonometric

transformations it follows from equation (13) that

�z1M (t)z2M (t)�t =Z2
M [1/2(cos (kxM (x1 − x2))− cos (kxM (x1 + x2)))]

×[1/2(cos (kyM ( y1 − y2))− cos (kyM ( y1 + y2)))]. (14)

Following the procedure suggested in section (2) kxM and kyM can be expressed in terms
of the bending wavenumber (kB ) and angle u. The sum over the individual modes is then
substituted by an integration carried out in a strip of width Dk much smaller than the
band centre frequency wavenumber (kb ) (illustration in Figure 1). This substitution is the
basis of the method of integral estimates as proposed by Bolotin [6]. The result of this
operation is

s
M $ Dk

�z1M (t)z2M (t)�t =gDk g
p/2

0

�z1M (t)z2M (t)�t du dkB

=
NZ2

M

4 gDk $g
p/2

0

cos (kB (x1 − x2) cos u) cos (kB ( y1 − y2) sin u) du

−g
p/2

0

cos (kB (x1 − x2) cos u) cos (kB ( y1 + y2) sin u) du

−g
p/2

0

cos (kB (x1 + x2) cos u) cos (kB ( y1 − y2) sin u) du

+g
p/2

0

cos (kB (x1 + x2) cos u) cos (kB ( y1 + y2) sin u) du% dkB ,

(15)

where N modes are assumed to be excited in the band Dk and Z2
M is assumed equal for

all modes. The four integrals inside the brackets in the above equation can be solved using
equation (A3) presented in Appendix A. The solution is

p

2
[J0 (kB z(x1 − x2)2 + ( y1 − y2)2)− J0 (kB z(x1 − x2)2 + ( y1 + y2)2)

−J0 (kB z(x1 + x2)2 + ( y1 − y2)2)+ J0 (kB z(x1 + x2)2 + ( y1 + y2)2)]. (16)

The expressions for fp/2
0 �z2

1M (t)�t du and fp/2
0 �z2

2M (t)�t du can be obtained from equations
(15) and (16) by making x1 = x2 and y1 = y2. The resulting integrals can then be solved
using expressions (A1), (A2) and (A3) from Appendix A. For point 1 the result is

g
p/2

0

�z2
1M (t)�t du=

NpZ2
M

8
[1−J0 (2kB x1)− J0 (2kB y1)+ J0 (2kB zx2

1 + y2
1 )]. (17)
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Figure 3. Interference patterns near the corner of a simply supported plate.

When divided by NpZ2
M /8, the above expression gives the interference patterns near the

boundaries of the plate as originally derived by Lyon [11]. It expresses the relation between
the mean square acceleration near the boundaries and its equivalent in a position far from
the boundaries. A sketch of such interference patterns near the corner of a plate are
presented in Figures 3 and 4. They are sketched as a function of a typical wavelength (l)
and it can be noted from the contour plot of Figure 4 that when x1, y1 e l and x2, y2 e l

the mean square values of the response variable do not depart considerably from the spatial
average (�v2�).

The integral of the type

g
k2

k1

J0 (kB r) dkB , (18)

required when the terms of equation (16) and (17) are summed in the strip Dk= k1 − k2,
has been shown by Cook et al. [12] to be given by

J0 (kb r)Dk+terms of the order ((k2 − k1)/kb )2Dk (19)

where kb is the bending wavenumber at the band centre frequency. Assuming that the width
of the strip is small enough for the second terms in equation (19) to be neglected, one
obtains from equations (15)–(17) and (10) an approximate expression for the frequency

Figure 4. Contour plot for the interference patterns near the corner of a simply supported flat plate.
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averaged spatial correlation coefficient of vibration displacement between two points on
a simply supported homogeneous flat plate. This expression is,

g12 (x1, x2, fc )=

[J0 (kb z(x1 − x2)2 + (y1 − y2)2)− J0 (kb z(x1 − x2)2 + (y1 + y2)2)
−J0 (kb z(x1 + x2)2 + (y1 − y2)2)+ J0 (kb z(x1 + x2)2 + (y1 + y2)2)]

[1−J0 (2kb x1)− J0 (2kb y1)+ J0 (2kb zx2
1 + y2

1 )]1/2

×[1− J0 (2kb x2)− J0 (2kb y2)+ J0 (2kb zx2
2 + y2

2 )]1/2

. (20)

The above result is valid in frequency bands whose centre frequency is fc (with
corresponding bending wavenumber kb ) in which a spatially uncorrelated random source
excites a large number of plate modes. As the bandwidth of the frequency band increases
beyond a certain limit the frequency averaged coefficient presented in equation (20) is no
longer valid. Equation (20) is also valid for the frequency averaged spatial correlation
coefficient of vibration velocity or acceleration on simply supported plates.

All the results presented in this section presuppose that points 1 and 2 are situated in
the quarter space bounded by 0E xE a/2 and 0E yE b/2, where a and b are the plate
dimensions (Figure 2). However, they are unaffected by the substitution x:a-x, y:b-y
(p. 121, reference [11]) and, therefore can be used to represent the interference patterns
and correlation coefficients in other sections of the plate.

A number of simplifications can be carried out in equation (20) but the most important
one is for the case in which points 1 and 2 are far from the edges. In this situation, the
three last terms on the right side of equation (17) and on equation (16) approach zero and
are much smaller than the first term. For this reason, these terms can be neglected. As a
result, one obtains equation (21) which gives the frequency averaged spatial correlation
coefficient in points remote from the edges on a simply supported flat plate.

g12 (x1, x2, fc )= J0 (kb r), (21)

where r is the distance between points 1 and 2. However, this approximation is not valid
for some specific lines in which there is superposition of nodal lines. This is the result
derived by Cook et al. [12] and by Morrow [10] for a two-dimensional reverberant sound
field. Similarly, Stearn [13] has shown that this result also applies to a diffuse bending wave
field provided that the frequency band is restricted to a one-third octave and kb r is less
than ten. Even though the present analysis has been restricted to simply supported edges,
equation (21) is valid for any type of boundary condition because, as shown by Bolotin
[6], flat structures behave like simply supported plates at points remote from their
boundaries at frequencies high compared with the fundamental resonance frequency.

4. SPATIAL CORRELATION COEFFICIENTS ON MODALLY DENSE FLAT PLATES
WITH GENERIC BOUNDARY CONDITIONS

In order to derive an expression for the spatial correlation coefficients of the vibration
response of random excited flat plates with arbitrary boundary conditions, the dynamic
response of a rectangular plate is represented using Bolotin’s dynamic edge effect method
[6]. This method involves using a generating (inner) solution in the form of a sinusoidal
function and an exponential term (outer solution) that accounts for the dynamic boundary
effect in the boundary zone. For the case of a rectangular plate in which the edges generate
an evanescent near field, an approximate representation for the normal displacements at
points 1 and 2 for one particular resonant mode can be written as [6]

z1M (t)=ZM (t)X(x1)Y(y1), z2M (t)=ZM (t)X(x2)Y(y2), (22)
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where,

X(x)= sin kx (x− jx )+Cx exp (−mx x), Y(y)= sin ky (y− jy )+Cy exp (−my y),

mx =zk2
x +2k2

y , my =zk2
y +2k2

x .

The dynamic edge parameters, sin kx jx , cos kx jx , Cx , cos ky jy , sin ky jy , Cy , are
obtained from the plate boundary conditions. The dynamic edge parameters for simply
supported, clamped, free, guided or spring supported edges are presented in Appendix B.
Multiplying and time averaging the displacements at points 1 and 2 one obtains expressions
for �z1M (t)z2M (t)�t , �z2

1M (t)�t and �z2
2M (t)�t . These expressions are valid for a single mode

with modal wavenumbers kx and ky . As already presented, a frequency averaged value for
these expressions can be obtained by summing the contribution from each mode that is
excited in the band. Alternatively, when the structure has a high modal density the discrete
wavenumbers (kxM , kyM ) can be substituted by the continuous functions kB cos u and
kB sin u and the modal summation substituted by an integration over wavenumber space
(Figure 1). In addition, the dynamic edge parameters will also be function of kB and u,
though this dependence is omitted in equations (23) to (28).

Performing this substitution one has that

s
M $ Dk

�z1M (t)z2M (t)�t =gDk g
p/2

0

�z1M (t)z2M (t)�t du dkB

=NZ2
M gDk g

p/2

0

X(x1)X(x2)Y(y1)Y(y2) du dkB , (23)

where,

X(x1)X(x2)= 1
2 [cos (kB (x1 − x2) cos u)− cos (kB (x1 + x2) cos u) cos (2jx kB cos u)

− sin (kB (x1 + x2) cos u) sin (2jx kB cos u)]+C2
x exp (−mx (x1 + x2))

+Cx exp (−mx x2) [cos (jx kB cos u) sin (kB x1 cos u)

+ sin (jx kB cos u) cos (kB x1 cos u)]

+Cx exp (−mx x1) [cos (jx kB cos u) sin (kB x2 cos u)

+ sin (jx kB cos u) cos (kB x2 cos u)], (24)

and

Y(y1)Y(y2)= 1
2 [cos (kB (y1 − y2) sin u)− cos (kB (y1 + y2) sin u) cos (2jy kB sin u)

− sin (kB (y1 + y2) sin u) sin (2jy kB sin u)]+C2
y exp (−my (y1 + y2))

+Cy exp (−my y2) [cos (jy kB sin u) sin (kB y1 sin u)

+ sin (jy kB sin u) cos (kB y1 sin u)]

+Cy exp (−my y1) [cos (jy kB sin u) sin (kB y2 sin u)

+ sin (jy kB sin u) cos (kB y2 sin u)], (25)

and N modes are assumed to be excited in the band Dk. In order to estimate the
correlation coefficient, analytical expressions for aM $ Dk �z2

1M (t)�t and aM $ Dk �z2
2M (t)�t are
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also needed. These expressions are obtained from (23) by setting x1 = x2 and y1 = y2. For
point 1 one has that

s
M $ Dk

�z2
1M (t)�t =gDk g

p/2

0

�z2
1M (t)�t du dkB =NZ2

M gDk g
p/2

0

W(x1)W(x2) du dkB , (26)

where

W(x1)= 1
2 [1−cos (2kB x1 cos u) cos (2jx kB cos u)− sin (2kB x1 cos u) sin (2jx kB cos u)]

+2Cx exp (−mx x1) [cos (jx kB cos u) sin (kB x1 cos u)

+ sin (jx kB cos u) cos (kB x1 cos u)]+C2
x exp (−2mx x1). (27)

and,

W(y1)= 1
2 [1−cos (2kB y1 sin u) cos (2jy kB sin u)− sin (2kB y1 sin u) sin (2jy kB sin u)]

+2Cy exp (−my y1) [cos (jy kB sin u) sin (kB y1 sin u)

+ sin (jy kB sin u) cos (kB y1 sin u)]+C2
y exp (−2my y1). (28)

The expression for s
M $ Dk

�z2
2M (t)�t is analogous to (26) with the index 1 substituted by

2 in expressions (27) and (28). In the above expressions one has that,

mx = kB z1+sin2 u , my = kB z1+cos2 u . (29)

Finally, from (10), (23) and (26) one obtains an expression for the frequency averaged
spatial correlation coefficient at points x1 = (x1, y1) and x2 = (x2, y2),

g12 (x1, x2, fc )=
gDk g

p/2

0

X(x1)X(x2)Y(y1)Y(y2) du dkB

$gDk g
p/2

0

W(x1)W(y1) du dkB %
1/2

$gDk g
p/2

0

W(x2)W(y2) du dkB %
1/2

,

(30)

where X(x1)X(x2), Y(y1)Y(y2), W(x1), W(y1), W(x2) and W(y2) are given by equations
(24), (25), (27), (28).

The above result allows the computation of spatial correlation coefficients for different
types of boundary conditions by using the relevant dynamic edge parameters which are
presented in Appendix B. For the majority of these boundary conditions the integration
in wavenumber space has to be performed numerically, since no closed form solutions have
been found for these integrals. Attempts were made to obtain closed form expressions
using various integration procedures, results from tables of integrals [14], and symbolic
languages such as Maple V. However, no computationally convenient expressions were
found for the correlation coefficient of plates with clamped, free or spring supported edges.
Therefore, one had to resort to numerical integration as a means of computing the
correlation coefficient of plates with these boundary conditions. Nevertheless, as the
integration in angle u is performed in only one variable the computing time involved is
not critical. The numerical efficiency and precision aspects of the integration routines
employed are discussed in reference [2].
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Similar results can also be derived using a free wave approach [15] as presented in
reference [2]. The use of the free wave approach also enables the derivation of results for
plates with edges with different boundary conditions, such as a plate with two simply
supported edges and two free edges. The analytical results derived herein are compared
with experimental results of frequency averaged spatial correlation coefficients obtained
on various plates in a companion paper [9].

5. INFLUENCE OF ACOUSTIC AND MECHANICAL EXCITATION ON THE SPATIAL
CORRELATION COEFFICIENT

Assuming the plate natural modes of vibration are available, the cross-spectrum of the
normal vibration acceleration on a flat plate excited by a random field of cross-spectrum
S1 (e1, j1, e2, j2, v) can be written as [16],

Sa (x1, y1, x2, y2, v)=v4 s
p

s
q

fp (x1, y1)fq (x2, y2)
Mp Mq

[Hp −iWp ]
[H2

p +W2
p ]

[Hq +iWq ]
[H2

q +W2
q ]

×gS gS

Sf (e1, j1, e2, j2, v)fp (e1, j1)fq (e2, j2) de1 de2 dj1 dj2,

(31)

where fp (x1, y1) represents the mode shape of the pth plate mode with natural frequency
vp at point 1, hp is the modal loss factor, Mp is the modal mass, Hp =v2

p −v2 and
Wp = hp v vp . When the modal overlap factor is very much smaller than unity the cross
terms do not contribute significantly to the response and can be neglected. Expression (31)
is then written as

Sa (x1, y1, x2, y2, v)=v4 s
p

fp (x1, y1)fp (x2, y2)
D2

p

1
[H2

p +W2
p ]

×gS gS

Sf (e1, j1, e2, j2, v)fp (e1, j1)fp (e2, j2) de1 de2 dj1 dj2.

(32)

The implications of neglecting the cross terms in the evaluation of equations that have
the form of equation (32) have been discussed by a number of authors as described by
Elishakoff et al. (p. 153, reference [16]).

5.1.       

The cross-spectrum of a stationary random force applied at the point (x0, y0) is given
by (equation (190), reference [4]),

Sf (e1, j1, e2, j2, v)= d(e1 − x0)d(j1 − y0)d(e2 − x0)d(j2 − y0)Sf (v), (33)

where Sf (v) is the force spectral density and d is the Dirac delta function. Substituting
(33) in (32) and evaluating the double integral one obtains,

Sa (x1, y1, x2, y2, v)=v4 s
p

fp (x1, y1)fp (x2, y2)
D2

p

1
[H2

p +W2
p ]

f2
p (x0, y0)Sf (v). (34)
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From (34) one can show that the correlation coefficient is given by

g12 (x1, x2, v)=

s
p

fp (x1)fp (x2)f2
p (x0)

1
D2

p [H2
p +W2

p ]

$sp f2
p (x1)f2

p (x0)
1

D2
p [H2

p +W2
p ]%

1/2

$sp f2
p (x2)f2

p (x0)
1

D2
p [H2

p +W2
p ]%

1/2
,

(35)

where x1 = (x1, y1), x2 = (x2, y2), x0 = (x0, y0).
The above expression enables the correlation coefficient to be computed for any pair

of points and for any frequency. The disadvantage is that one needs to estimate the plate
natural frequencies and associated mode shapes. In order to compute a frequency averaged
value for the correlation coefficient it is necessary to integrate the term D2

p [H2
p +W2

p ] over
frequency. As explained in reference [4], when the natural frequencies vp do not overlap
the limits of integration can be extended to infinity. Assuming the modal masses and loss
factors are relatively uniform the following standard result is obtained

g
a

−a

dv

D2
p [(v2

p −v2)2 + (hp vp v)2]
=

p

M2h
, (36)

where M is the total mass of the plate and h is the plate frequency averaged loss factor.
Substituting (36) in (35) one obtains the frequency averaged spatial correlation coefficient
of acceleration due to a random point force applied at x0 = (x0, y0)

g12 (x1, x2, fc )=

s
p

fp (x1)fp (x2)f2
p (x0)

$sp f2
p (x1)f2

p (x0)%
1/2

$sp f2
p (x2)f2

p (x0)%
1/2

, (37)

where the summation indicated involves all the modes whose natural frequencies are
situated inside the frequency band whose centre frequency is fc . This expression is
employed in section 6 to obtain theoretical results for the correlation coefficient using
modal summation. In the spirit of the approximations employed in this work the modal
summation can be substituted by an integration in wavenumber space. As a result the
asymptotic form of equation (37) in terms of circular co-ordinates (kB , u) in wavenumber
space is given by

g12 (x1, x2, fc )=

gDk g
p/2

0

f(kB , u, x1)f(kB , u, x2)f2(kB , u, x0) du dkB

$gDk g
p/2

0

f2(kB , u, x1)f2(kB , u, x0) du dkB %
1/2

$gDk g
p/2

0

f2(kB , u, x2)f2(kB , u, x0) du dkB %
1/2

,

(38)

where for a simply supported plate: f(kB , u, x1)= sin (kB x1 cos u) sin (kB y1 sin u). Results
from equations (38) and (37) were compared for the case of a simply supported plate:
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Figure 5. Comparison of results from equation (21) with modal summation results due to point excitation
(equation 37). Line D, force at x=0·165 m, y=0·335 m, one-third octave bands. ——, theory (equation 21);
- - - -, large plate (equation 37); ++, small plate (equation 37); **, point excitation (equation 38). (a) 125 Hz;
(b) 200 Hz; (c) 500 Hz; (d) 1250 Hz.

examples are presented in section 6. As shown in Figures 5 and 6, good agreement was
obtained when the discrete modal summation of expression (37) was computed and
compared with the asymptotic results from equation (38). This indicates that expression
(38) is a good approximation of the spatial correlation coefficient of point excited
structures. This agrees with the analysis of reference [4] (p. 60) in which it is suggested that
an asymptotic expression in the form of equation (38) provides an excellent approximation
to the exact discrete sum of an equation similar to equation (37). In addition, it is observed
that considerations similar to the ones employed in this section will lead to the equation
(196) of reference [4].

Figure 6. Comparison of results from equation (20) and equation (21) with modal summation results due to
point excitation (equation 37). Line B, force at x=0·24 m, y=0·24 m, one-third octave bands. ——,
simply-supported (equation 20); - - - -, large plate, modal sum; ++, point excitation (equation 38); . . . , diffuse
field (equation 21). (a) 125 Hz; (b) 250 Hz; (c) 500 Hz; (d) 3150 Hz.
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5.2.           

The cross-spectrum of the random force due to a excitation field in the form of a diffuse
acoustic field is given by [17]

Sf (e1, j1, e2, j2, v)= (sin kr/kr) Sp (v)/2, (39)

where r is the distance between points (e1, j1) and (e2, j2), k is the acoustic wavenumber
and Sp (v) is the power spectral density of the pressure field. Substituting (39) in (32) one
obtains an exact expression for the cross-spectral density of the acceleration response,

Sa (x1, y1, x2, y2, v)=v4 s
p

fp (x1, y1)fp (x2, y2)
D2

p

1
[H2

p +W2
p ]

×gS gS

sin kr
kr

Sp (v)fp (e1, j1)fp (e2, j2) de1 de2 dj1 dj2. (40)

where,

Ip (v)=gS gS

sin kr
kr

SP (v)fp (e1, j1)fp (e2, j2) de1 de2 dj1 dj2. (41)

Assuming the power spectral density of the pressure field varies slowly with frequency and
is equal to S0 one can write that

S0 Ip (v)=S0 gS gS

sin kr
kr

fp (e1, j1)fp (e2, j2) de1 de2 dj1 dj2. (42)

For cases in which the modal mass Dp is almost the same for all the modes, the correlation
coefficient due to acoustic excitation in the form of a diffuse acoustic field can be
expressed as

g12 (x1, x2, v)=

s
p

fp (x1)fp (x2)
Ip (v)

[H2
p +W2

p ]

$sp f2
p (x1)

Ip (v)
[H2

p +W2
p ]%

1/2

$sp f2
p (x2)

Ip (v)
[H2

p +W2
p ]%

1/2
. (43)

The evaluation of the discrete modal summations presented in the above expression
involves computing the plate natural frequencies and associated mode shapes. A frequency
averaged result for expression (43) can be derived by following a similar procedure to the
one employed for the case of a point excited plate. This expression is

g12 (x1, x2, fc )= s
p

fp (x1)fp (x2)Ip (v)>$sp f2
p (x1)Ip (v)%

1/2

$sp f2
p (x2)Ip (v)%

1/2

, (44)

where the modes that are included in the summation have resonance frequencies inside the
band of interest. The acoustic wavenumber k corresponds to the frequency fc .

Substituting the modal summation by integration in wavenumber space one has, in
cylindrical co-ordinates,



  ,  457

g12 (x1, x2, fc )=

gDk g
u2

u1

f(kB , u, x1)f(kB , u, x2)I(k, kB , u) du dkB

$gDk g
u2

u1

f2(kB , u, x1)I(k, kB , u) du dkB %
1/2

$gDk g
u2

u1

f2(kB , u, x2)I(k, kB , u) du dkB %
1/2

, (45)

where k is calculated for the band centre frequency fc and

I(k, kB , u)=gS gS

sin kr
kr

f(kB , e1, j1, u)f(kB , e2, j2, u) de1 de2 dj1 dj2. (46)

Following the procedure presented in section 3, for cases in which the bandwidth is not
too large, the integral in kB can be approximated by the expression in the integrand with
kB substituted by the bending wavenumber kb calculated at the band centre frequency fc .

The limits of integration u1 and u2 for the case of acoustic excitation are defined by the
relative values of the acoustic wavenumber k and the bending wavenumber kb . As
explained in reference [18], plate modes which satisfy the condition

k2
x + k2

y Q k2 (47)

produce a component that radiates well. By reciprocity, one can suggest that only the plate
modes that satisfy the above condition will be efficiently excited by an acoustic field.
Therefore, it seems reasonable to evaluate the integral in wavenumber space presented in
equation (45) for a region that satisfies the condition (47). From Figure 7 one observes
that such a region is situated at the top and bottom ends of the wavenumber quarter-circle.
Then if one divides the region of integration into two the following pair of integration
limits is obtained,

u'1 =0, u'2 = k/kb ; u01 = p/2− k/kb , u02 = p/2; (48)

where the first pair correspond to the bottom region and the second pair correspond to
the top region. These integration limits were obtained from an approximate analysis of the
geometry representation of acoustic and bending wavenumbers on a wavenumber space.

Figure 7. Illustration of wavenumber region with plate modes excited by an acoustic field of wavenumber k0.
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In order to obtain a first approximation for the correlation coefficient due to acoustic
excitation, the integration limits presented in (48) were used as limits of integration for
the standard correlation coefficient expression (equation (30)). It was found that this
approximation gave results very similar to ones computed with equation (45). It was also
observed that the integration limits employed in the integration of equation (45) do not
affect the correlation coefficient results as the multiplication by the factor I(k, kb , u) will
have a similar effect to using the integration limits presented in (47).

6. SIMPLY SUPPORTED FLAT PLATES: A MODAL SUMMATION APPROACH

A modal summation model that employs the mode shapes of a simply supported flat
plate was used to simulate the dynamic behaviour of two simply supported flat plates. The
dimensions of these two plates were selected in order that they both have the same bending
wavenumber in each frequency band but one has a much higher modal density than the
other. The modal summation results are compared with analytical results (equations (20)
and (21)) presented in section 3.

The advantages of using a modal summation model are that the number of modal
responses summed in each frequency band can be controlled, and the effects of point
excitation can be assessed in relation to the spatially uncorrelated excitation
(rain-on-the-roof) assumed in the derivation presented in sections 3 and 4. An asymptotic
approximation for correlation coefficients on point excited plates is also used in the
comparison.

6.1.      

For a flat plate with simply supported boundary conditions a modal summation
expression for the frequency-averaged correlation coefficient of acceleration (g12 (x1, x2, fc ))
can be derived from equations (8), (12) and (13). The result is

g12 (x1, x2, fc )=

s
N

sin (kxM x1) sin (kxM x2) sin (kyM y1) sin (kyM y2)

$sN sin2(kxM x1) sin2 (kyM y1)%
1/2

$sN sin2 (kxM x2) sin2 (kyM y2)%
1/2

, (49)

where kxM =mp/a, kyM = np/b, m and n are the modal numbers, a and b are the dimensions
of the plate in the x and y directions, respectively, and N represents the number of modes
summed in each frequency band. The above result presupposes that the excitation is
random and spatially uncorrelated.

Based on the above equation the frequency averaged spatial correlation coefficient in
each frequency band was estimated in the following way: (i) the plate natural frequencies
were calculated and the modes grouped according to frequency band; (ii) the summations
presented in equation (49) were then computed for modes whose resonance frequencies are
in the respective band; (iii) the summations were repeated for each consecutive pair of
points on the line analysed; (iv) the results at each line were then plotted as a function
of non-dimensional separation distance kb r where kb is the bending wavenumber
calculated at the band centre frequency and r is the distance between each pair of points.

6.2.   

The above procedure was employed to estimate the vibration field correlation of two
simply supported plates which are illustrated in Figure 8. They both had the same
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Figure 8. Sketch of lines used in the verification of spatial correlation coefficient results.

thickness, h=0·001 m, and were assumed to be made of aluminium. One of the plates had
dimensions a= b=0·48 m (small plate) and the other a= b=1·5 m (large plate).
Consequently, both plates had the same bending wavenumber in each frequency band but
the large plate had a much higher modal density. In addition, because of the square
geometry of both plates, a large number of vibration modes having different shapes but
the same natural frequencies were used in the summation.

The correlation coefficient evaluation was carried out for points equally spaced along
lines whose positions are indicated in Figure 8. One of the points was assumed fixed and
the other displaced from it along the line in nine equally spaced points. Correlation
coefficient results were computed for lines B, C and D in one third octave bands from 63 Hz
to 3150 Hx and also for 20 frequency bands of constant width of 100 Hz from 50 Hz to
1950 Hz. A large amount of data was obtained in this investigation but only a small
selection of significant results are presented here.

Figure 9. Comparison of results from equation (20) with modal summation results for simply supported plate
(equation 49) along line C, one-third octave bands. ——, theory (equation 20); - - - -, large plate (equation 49);
++, small plate (equation 49). (a) 80 Hz, (b) 200 Hz, (c) 315 Hz, (d) 800 Hz.
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The comparison between modal summation and analytical results (equation (20)) for
points along line C is shown in Figure 9 for some frequency bands. Equal spacing of 2 cm
between the points was used on this line. Good agreement was observed between analytical
and modal summation results for both plates for frequency bands above (and including)
200 Hz. Results for the small plate did not agree with the theoretical results below 200 Hz
because of the small number of modes summed in each 1/3 octave band. For instance, in
the 200 Hz one third octave band the number of modes used in the small plate modal
summation was five.

As a means of further assessing the number of modes necessary for the analytical
frequency averaged results agree with modal summation ones, the modal summation
simulation was performed in constant bandwidths of 100 Hz for the small plate. For all
the lines the number of modes summed in each band varied from 4 to 8. Results for line
C in four frequency bands are presented in Figure 10. For centre frequencies 250 Hz and
450 Hz, six modes were included in the summation, seven modes were summed for 550 Hz
band, and only four modes for the 850 Hz frequency band. As shown in Figure 10, when
only four modes were included in the summation a poor agreement was observed. A mix
of good and reasonable agreement results was obtained for cases when six or seven modes
were present in a band. Good agreement was only obtained for cases in which at least eight
modes were included in the summation. Similar behaviour was observed for results along
the other lines. Stearn [17] employed a similar modal summation procedure to observe that
at least ten modes need to be excited at resonance in a frequency band for the correlation
coefficient to approximate the diffuse bending wave field function far from the edges of
a randomly excited structure. Thus, neglecting the effect of damping, it can be inferred that
for bands in which more than eight modes are excited by spatially uncorrelation forces,
the modal summation results agree with those of the theoretical model proposed in this
work (equation (20)).

The theoretical analysis presented in this work presupposes that the excitation applied
to the plate is random and spatially uncorrelated (rain-on-the-roof). Unfortunately, this
type of excitation is rarely encountered in real situations because the force is normally
applied over a small surface area. The influence of the excitation spatial distribution on
the vibration field correlation was analysed using the modal summation model. In the

Figure 10. Comparison of results from equation (20) with modal summation results (equation 49) for the small
plate along line C, 100 Hz constant bands. Key: ——, theory (equation 20); – · – · –, modal summation (equation
49). (a) 250 Hz (6 modes), (b) 450 Hz (6 modes), (c) 550 Hz (7 modes), (d) 850 Hz (4 modes).
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previous section, it was shown that the frequency averaged correlation coefficient due to
point excitation at x0 = (x0, y0) is given by equation (37). The same procedure as that
described in section 6.1 was used to obtain the correlation coefficients using equation (37)
along the lines sketched in Figure 8. For each line, different positions of the excitation
point were used.

A typical result of this simulation is presented in Figure 5. Line D was chosen for this
representation as it is reasonably far (in terms of wavelength) from all the boundaries in
almost all frequency bands analysed. As expected, it was observed that, along this line,
equation (20) ( simply-supported flat plate) and equation (21) (two-dimensional diffuse
wave field) gave the same results. Thus, only the theoretical results for a simply-supported
flat plate (equation (20)) are plotted in Figure 5. The asymptotic expression for the
correlation coefficient due to point excitation shown in equation (38) is also employed in
this comparison and is labelled ‘point excitation’ in Figures 5 and 6.

As shown in Figures 5 and 6, results for the large plate and for the asymptotic expression
of the point excited correlation coefficient (equation (38)) agreed quite well in the frequency
range analysed. Furthermore, both results approached the expression for the spatially
uncorrelated correlation coefficient as the frequency increased. Based on modal summation
numerical procedure results, Stearn [17] also observed that point excited correlation
functions approach that of diffuse bending wave fields for points far (in terms of
wavelength) from the edges and excitation point. However, when comparing experimental
observations on point excited plates to the diffuse field result, this agreement was not
observed. He explained this discrepancy by pointing out that the plates were relatively
highly damped.

The relative strengths of the field directly radiated from the point of excitation and the
plate reverberant field is strongly dependent on the system damping. An analysis of such
relative strength was presented by Skudrzyk [19]. He demonstrated that the distance in
which the strength of the field radiated by the point force equals that of the reverberant
field is given by (p. 259, reference [19])

r=
2pll0 h

lB
= ll0 hkb , (50)

where l is the average distance the wave front travels between successive reflections, l0 is
the averaged distance to the boundary of the plate, h represents the plate loss factor and

Figure 11. Distance from excitation point at which the strength of the field radiated by the driver equals that
of the plate reverberant field as a function of damping. Key: ——, h=0·04; – · – · –, h=0·01; - - - -, h=0·004;
· · · · h=0·001.
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kb is the bending wavenumber. An estimate of this distance for the small plate is presented
in Figure 11 as a function of typical loss factors. As shown, for the case of relatively highly
damped systems (hq 0·04) the direct field will dominate the vibration field. However, for
moderate to low values of loss factor (hQ 0·01) the reverberant field will predominate over
most of the vibration field, apart from a region very close to the excitation point.

For points close to the system boundaries, such as line B, for which the results are
presented in Figure 6, the effect of the point excitation on the vibration field was less
pronounced than for points situated far from the edges. This is because the interference
field generated by the edges dominates the vibration field in this region. These are only
preliminary observations on the influence of the excitation on the correlation coefficients
of a vibration field and, as discussed in section 5, further work is necessary to clarify this
situation. At present, it can be stated that the theoretical approximations for the
correlation coefficient derived in this work can be approximately applied for point excited
structures having moderate damping.

Unlike the situation observed for line D, the theoretical results from equations (20) and
(21) differ considerably for points placed along line B. As presented in Figure 6, the
zero-crossing points and peak values for results from equation (21) (diffuse bending wave
field) are consistently different from that from equation (20) (simply supported flat plate).
It was found that, above 400 Hz, both small and large plate results agree with the
theoretical results for a simply supported flat plate, whereas results from equation (21) are
very different from the other three results in all frequency bands analysed. This
disagreement happened irrespective of the type of excitation (spatially uncorrelated or
point excitation) and it clearly illustrates the effect of the boundaries in correlating the
wave field near the edges.

Furthermore, it was also observed that the relative position of both measurement points
in relation to the edges is relevant. In the results presented in Figure 6, one of the points
was assumed fixed and placed at the bottom of the line (closer to the edge) and the other
moved along the line towards the plate centre. However, were the fixed point placed closer
to the centre of the plate, the theoretical formulations (equations (20) and (21)) and modal
summation results would be more similar. This indicates that both points need to be placed
inside the ‘‘one-wavelength-from-the-edges’’ region for the diffuse wave field and
simply-supported results disagree. This observation supports the theoretical analysis of
section 3.

7. CONCLUSIONS

It is shown that a probabilistic representation can be used to describe the vibration field
generated by a structural system based on a spatial correlation model. This probabilistic
representation presupposes that a large number of plate modes are available in the
frequency band of analysis. The spatial correlation coefficients show large variations in a
region one wavelength from the edges; however, in regions more remote from the edges,
the form of the spatial correlation is essentially independent of the boundary conditions
and approach that of a diffuse bending wave field.

Spatial correlation coefficients for plates subject to point excitation and a diffuse sound
field reveal that, due to the normalisation adopted, these coefficients are not much different
from those derived for spatially uncorrelated type of excitation. These expressions are
restricted to resonant structural response.

Results obtained with the closed form solution derived for the case of a simply supported
flat plate are compared to results obtained using a standard modal summation method.



  ,  463

This indicates that at least eight resonant modes need to be included in a frequency band
for the present approach be valid. In contradiction to the conclusions of Stearn [17], it
is also concluded that a close approximation to a diffuse bending wave field can be set
up in a moderately damped, point excited bounded structure.
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APPENDIX A: RESULTS OF SOME INTEGRALS USED IN THIS WORK

g
p/2

0

cos (A cos u) du=
p

2
J0 (A), (reference [14],) (A1)

g
p/2

0

cos (A sin u) cos2nu du=
p

2
(2n−1)!

An Jn (A), nq−1/2, (reference [14],)

then for n=0 one can write that

g
p/2

0

cos (A sin u) du=
p

2
J0 (A), (A2)

I=g
p/2

0

cos (A cos u) cos (B sin u) du=
p

2
J0 (zA2 +B2), (reference [2].) (A3)

APPENDIX B: DERIVATION OF PARAMETERS OF BOLOTIN’S DYNAMIC EDGE
EFFECT METHOD OF MODAL REPRESENTATION FOR VARIOUS BOUNDARY

CONDITIONS

Expressions for the spatial correlation coefficient of modally dense flat plates have been
derived using an approximate modal representation based on Bolotin’s dynamic edge effect
method [6]. This representation presupposes that the plate mode shapes remote from the
boundaries approaches a sinusoidal function and close to the edges the sinusoidal functions
are multiplied by an exponentially decaying function. A typical displacement function is
then given by [6]

z(x, y, t)=X(x)Y(y) cos vt, (B1)

where the functions X(x) and Y(y) change according to the position on the plate and are
expressed as

X(x)= sin kx (x− jx )+Cx exp (−mx x), for points close to x=0,

X(x)= sin kx (x− jx ), for points remote from x=0,

Y(y)= sin ky (y− jy )+Cy exp (−my y), for points close to y=0,

Y(y)= sin ky (y− jy ), for points remote from y=0.

As discussed in sections 3 and 4, the boundary conditions at the edges determine the
coefficients sin kx jx , cos kx jx , Cx , sin ky jy , cos ky jy and Cy . In this appendix only
coefficients in x are derived, however, the expressions for the coefficients in y are similar,
the only modification necessary is to change the indices in x for y. Moreover, the
wavenumbers kx and ky in the expressions shown below are substituted by k cos u and
k sin u in the numerical computation.

B.1.   

For a left simply supported edge (x=0) one has the following boundary conditions [20]
X(0)=0, X0(0)=0. Applying these boundary conditions in the equation for X(x) one has,

−sin kx jx +Cx =0, k2
x sin kx jx + m2

x Cx =0.
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The solution of the above system of equations is given by,

sin kx jx =Cx =0, (B2)

and as a result,

cos kx jx =1. (B3)

B.2.  

The boundary conditions on a left clamped edge (x=0) are given by X(0)=X'(0)=0.
Applying these boundary conditions in equation (B1) one obtains the following system of
equations,

sin kx jx =Cx , cos kx jx =(mx /kx )Cx .

Solving this system of equations one obtains

Cx =sin kx jx =
kx

z2(k2
x + k2

y )
, cos kx jx =

mx

z2(k2
x + k2

y )
=

zk2
x +2k2

y

z2(k2
x + k2

y )
. (B4)

B.3.  

For a left free edge (x=0) one has that [20]

12z/1x2 + v 12z/1y2 = 13z/1x3 + (2− v) 13z/1x 1y2 =0.

Applying these boundary conditions in equation (B1), including evanescent terms for X(x)
but neglecting evanescent terms for Y(y), the following system of equations is obtained

(k2
x + nk2

y ) sin kx jx +(m2
x − nk2

y )Cx =0,

(k3
x +(2− n)kx k2

y ) cos kx jx +(m3
x −(2− n)mx k2

y )Cx =0.

The solution of this system of equations is given by,

sin kx jx = =W1 =/zW2
1 +W2

2 , (B5)

cos kx jx = =W2 =/zW2
1 +W2

2 , Cx =1/zW2
1 +W2

2 , (B6, B7)

where,

W1 =−
(m2

x − nk2
y )

(k2
x + nk2

y )
, W2 =−

(m3
x −(2− n)mx k2

y )
(k3

x +(2− n)kx k2
y )

.

B.4.  

The following boundary conditions apply for a left guided edge (x=0),

X'(0)=X1(0)=0.

In a similar manner to the previous cases, one can apply these boundary conditions to
equation (B1) and obtain,

kx cos kx jx − mx Cx =0, k3
x cos kx jx + m3

x Cx =0.

The solution of the above system of equations is given by,

cos kx jx =Cx =0, (B8)

and as a result,

sin kx jx =1. (B9)
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Figure B1. General spring attachment along the left edge of a plate.

B.5.   

As a means of deriving the coefficients for a general type of edge attachment the plate
is assumed to be uniformly supported along the edge by a translational and a rotational
spring. This support provides translational, rotational and coupling resistance and the
respective stiffness are kzz , kuu and kzu . A sketch of this support is presented in Figure B1.
For a left edge (x=0) the equations associated with this type of support are given by,

D$13z
1x3 + (2− n)

13z
1y2 1x%= kzz z+ kzu 01z

1x1, −D$12z
1x2 + n

12z
1y2%= kuu 01z

1x1+ kzu z.

Applying these boundary conditions in equation (B1), including evanescent terms for X(x)
but neglecting evanescent terms for Y(y), one obtains the following system of equations,

(−Dk3
x −Dkx k2

y (2− n)− kzu kx ) cos kx jx + kzz sin kx jx

+(−Dm3
x +D(2− n)mx k2

y − kzz + kzu mx )Cx =0,

(Dk2
x +Dk2

y n− kzu ) sin kx jx + kuu kx cos kx jx +(Dm2
x −Dk2

y n− kuu mx + kzu )Cx =0.

The solution of the above system of equations yields,

sin kx jx =(W2 W4 −W3 W5)/z(W1 W5 −W6 W2)2 + (W2 W4 −W3 W5)2, (B10)

cos kx jx =(W1 W5 −W6 W2)/z(W1 W5 −W6 W2)2 + (W2 W4 −W3 W5)2, (B11)

Cx =(W3 W6 −W1 W4)/z(W1 W5 −W6 W2)2 + (W2 W4 −W3 W5)2, (B12)

where,

W1 =Dk2
x +Dk2

y n− kzu , W2 =Dm2
x −Dk2

y n− kuu mx + kzu , W3 = kuu kx ,

W4 =−Dk3
x −Dkx k2

y (2− n)− kzu kx , W5 =−Dm3
x +D(2− n)mx k2

y − kzz + kzu mx ,

W6 = kzz .

B.6.     /  [15]
The parameters of the Bolotin’s dynamic edge effect method can be applied to

beam/stiffener coupling. It is only necessary to express the stiffness coefficients kzz , kuu and
kzu as a function of the stiffener dynamic properties. The stiffness coefficients of a general
stiffener (illustrated in Figure B2) have been considered in reference [15] and were derived
in the form

kzz =EI1 k4
2 − rAv2, kzu =−EI12 c0 k4

2 − rAc2 v2,
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Figure B2. Geometry of stiffener [15].

kuu =(EG+EI2 c2
0 )k4

2 +GJk2
2 − (I+ rAc2

1 + rAc2
2 )v2, (B13)

where EI1, EI2 and EI12 are the flexural rigidities of the stiffener, EG and GJ are the
torsional rigidities, rA are the mass and polar moment of inertia per unit length. The points
S, C and P in Figure B2 represent the shear centre, the centroid and the plate attachment
point, respectively. The stiffness coefficients presented in (B13) were derived assuming the
plate is effectively rigid in-plane (kL and ks =0).


